209 research outputs found

    Current techniques in postmortem imaging with specific attention to paediatric applications

    Get PDF
    In this review we discuss the decline of and current controversies regarding conventional autopsies and the use of postmortem radiology as an adjunct to and a possible alternative for the conventional autopsy. We will address the radiological techniques and applications for postmortem imaging in childre

    Educational paper: Imaging child abuse: the bare bones

    Get PDF
    Fractures are reported to be the second most common findings in child abuse, after skin lesions such as bruises and contusions. This makes careful interpretation of childhood fractures in relation to the provided clinical history important. In this literature review, we address imaging techniques and the prevailing protocols as well as fractures, frequently seen in child abuse, and the differential diagnosis of these fractures. The use of a standardised protocol in radiological imaging is stressed, as adherence to the international guidelines has been consistently poor. As fractures are a relatively common finding in childhood and interpretation is sometimes difficult, involvement of a paediatric radiologist is important if not essential. Adherence to international guidelines necessitates review by experts and is therefore mandatory. As in all clinical differential diagnoses, liaison between paediatricians and paediatric radiologists in order to obtain additional clinical information or even better having joint review of radiological studies will improve diagnostic accuracy. It is fundamental to keep in mind that the diagnosis of child abuse can never be solely based on radiological imaging but always on a combination of clinical, investigative and social findings. The quality and interpretation, preferably by a paediatric radiologist, of radiographs is essential in reaching a correct diagnosis in cases of suspected child abuse

    European Society of Paediatric Radiology 2019 strategic research agenda: improving imaging for tomorrow’s children

    Get PDF
    The European Society of Paediatric Radiology (ESPR) research committee was established to initiate, drive forward and foster excellence in paediatric imaging, paediatric image-guided intervention and radiation protection research, by facilitating more evidence-based standards, protocols and multi-institutional collaborations. The ESPR Strategic Research Agenda outlines our current research approach, highlighting several areas of paediatric imaging where the society can help guide current and future research, and emphasizing those areas where early research (“seed”) funding may need to be allocated by this and other societies as precursors to larger grant applications. The key aims are to evaluate normal variation in order to be able to confidently diagnose disease states, develop robust image-based classification systems to aid diagnosis and treatment monitoring, and help develop evidence-based clinical guidelines using current literature and experience to identify knowledge gaps. For this reason, the development of evidence-based imaging pipelines, broken down step-by-step to include diagnosis, classification and clinical effectiveness, should be the end goal for each disease entity for each affected child. Here, we outline the 2019 ESPR Strategic Research Agenda along three points in the clinical imaging pipeline: clinical referral, disease diagnosis and evolution, and clinical therapeutic evaluation and effectiveness. Through multicentre trials, using existing high-level experience and expertise, and nurturing the next generation of researchers, we will be able to achieve these aims.publishedVersio

    Staging clavicular development on MRI : pitfalls and suggestions for age estimation

    No full text
    Background MRI of the clavicle's sternal end has been studied for age estimation. Several pitfalls have been noted, but how they affect age estimation performance remains unclear. Purpose/Hypothesis To further study these pitfalls and to make suggestions for a proper use of clavicle MRI for forensic age estimation. Our hypotheses were that age estimation would benefit from 1) discarding stages 1 and 4/5; 2) including advanced substages 3aa, 3ab, and 3ac; 3) taking both clavicles into account; and 4) excluding morphological variants. Study Type Prospective cross-sectional. Population Healthy Caucasian volunteers between 11 and 30 years old (524; 277 females, 247 males). Field Strength/Sequence 3T, T-1-weighted gradient echo volumetric interpolated breath-hold examination (VIBE) MR-sequence. Assessment Four observers applied the most elaborate staging technique for long bone development that has been described in the current literature (including stages, substages, and advanced substages). One of the observers repeated a random selection of the assessments in 110 participants after a 2-week interval. Furthermore, all observers documented morphological variants. Statistical Tests Weighted kappa quantified reproducibility of staging. Bayes' rule was applied for age estimation with a continuation ratio model for the distribution of the stages. According to the hypotheses, different models were tested. Mean absolute error (MAE) differences between models were compared, as were MAEs between cases with and without morphological variants. Results Weighted kappa equaled 0.82 for intraobserver and ranged between 0.60 and 0.64 for interobserver agreement. Stages 1 and 4/5 were allocated interchangeably in 4.3% (54/1258). Age increased steadily in advanced substages of stage 3, but improvement in age estimation was not significant (right P = 0.596; left P = 0.313). The model that included both clavicles and discarded stages 1 and 4/5 yielded an MAE of 1.97 years, a root mean squared error of 2.60 years, and 69% correctly classified minors. Morphological variants rendered significantly higher MAEs (right 3.84 years, P = 0.015; left 2.93 years, P = 0.022). Data Conclusion Our results confirmed hypotheses 3) and 4), while hypotheses 1) and 2) remain to be investigated in larger studies. Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019

    The Association Between Training Load and Injury Risk in Elite Youth Soccer Players: a Systematic Review and Best Evidence Synthesis

    Get PDF
    Background: Injury risk in elite youth soccer players is high. Implementing an optimal training load is of utmost importance to reduce the risk of injuries. Objective: To conduct a systematic review and best evidence synthesis to explore the effects of internal and external training load on injury

    Non-radiologist-performed abdominal point-of-care ultrasonography in paediatrics — a scoping review

    Get PDF
    Background - Historically, US in the paediatric setting has mostly been the domain of radiologists. However, in the last decade, there has been an uptake of non-radiologist point-of-care US. Objective - To gain an overview of abdominal non-radiologist point-of-care US in paediatrics. Materials and methods - We conducted a scoping review regarding the uses of abdominal non-radiologist point-of-care US, quality of examinations and training, patient perspective, financial costs and legal consequences following the use of non-radiologist point-of-care US. We conducted an advanced search of the following databases: Medline, Embase and Web of Science Conference Proceedings. We included published original research studies describing abdominal non-radiologist point-of-care US in children. We limited studies to English-language articles from Western countries. Results - We found a total of 5,092 publications and selected 106 publications for inclusion: 39 studies and 51 case reports or case series on the state-of-art of abdominal non-radiologist point-of-care US, 14 on training of non-radiologists, and 1 each on possible harms following non-radiologist point-of-care US and patient satisfaction. According to included studies, non-radiologist point-of-care US is increasingly used, but no standardised training guidelines exist. We found no studies regarding the financial consequences of non-radiologist point-of-care US. Conclusion - This scoping review supports the further development of non-radiologist point-of-care US and underlines the need for consensus on who can do which examination after which level of training among US performers. More research is needed on training non-radiologists and on the costs-to-benefits of non-radiologist point-of-care US

    Automatic determination of Greulich and Pyle bone age in healthy Dutch children

    Get PDF
    Background: Bone age (BA) assessment is a routine procedure in paediatric radiology, for which the Greulich and Pyle (GP) atlas is mostly used. There is rater variability, but the advent of automatic BA determination eliminates this. Objective: To validate the BoneXpert method for automatic determination of skeletal maturity of healthy children against manual GP BA ratings. Materials and methods: Two observers determined GP BA with knowledge of the chronological age (CA). A total of 226 boys with a BA of 3-17 years and 179 girls with a BA of 3-15 years were included in the study. BoneXpert's estimate of GP BA was calibrated to agree on average with the manual ratings based on several studies, including the present study. Results: Seven subjects showed a deviation between manual and automatic BA in excess of 1.9 years. They were re-rated blindly by two raters. After correcting these seven ratings, the root mean square error between manual and automatic rating in the 405 subjects was 0.71 years (range 0.66-0.76 years, 95% CI). BoneXpert's GP BA is on average 0.28 and 0.20 years behind the CA for boys and girls, respectively. Conclusion: BoneXpert is a robust method for automatic determination of BA

    Osteoporosis in children and adolescents:when to suspect and how to diagnose it

    Get PDF
    Early recognition of osteoporosis in children and adolescents is important in order to establish an appropriate diagnosis of the underlying condition and to initiate treatment if necessary. In this review, we present the diagnostic work-up, and its pitfalls, of pediatric patients suspected of osteoporosis including a careful collection of the medical and personal history, a complete physical examination, biochemical data, molecular genetics, and imaging techniques. The most recent and relevant literature has been reviewed to offer a broad overview on the topic. Genetic and acquired pediatric bone disorders are relatively common and cause substantial morbidity. In recent years, there has been significant progress in the understanding of the genetic and molecular mechanistic basis of bone fragility and in the identification of acquired causes of osteoporosis in children. Specifically, drugs that can negatively impact bone health (e.g. steroids) and immobilization related to acute and chronic diseases (e.g. Duchenne muscular dystrophy) represent major risk factors for the development of secondary osteoporosis and therefore an indication to screen for bone mineral density and vertebral fractures. Long-term studies in children chronically treated with steroids have resulted in the development of systematic approaches to diagnose and manage pediatric osteoporosis. Conclusions: Osteoporosis in children requires consultation with and/or referral to a pediatric bone specialist. This is particularly relevant since children possess the unique ability for spontaneous and medication-assisted recovery, including reshaping of vertebral fractures. As such, pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children.What is Known:• Both genetic and acquired pediatric disorders can compromise bone health and predispose to fractures early in life.• The identification of children at risk of osteoporosis is essential to make a timely diagnosis and start the treatment, if necessary.What is New:• Pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children and children at risk of osteoporosis.• We offer an extensive but concise overview about the risk factors for osteoporosis and the diagnostic work-up (and its pitfalls) of pediatric patients suspected of osteoporosis
    corecore